Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Rep ; 14(1): 3716, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355753

RESUMO

Glycoproteins in urine have the potential to provide a rich class of informative molecules for studying human health and disease. Despite this promise, the urine glycoproteome has been largely uncharacterized. Here, we present the analysis of glycoproteins in human urine using LC-MS/MS-based intact glycopeptide analysis, providing both the identification of protein glycosites and characterization of the glycan composition at specific glycosites. Gene enrichment analysis reveals differences in biological processes, cellular components, and molecular functions in the urine glycoproteome versus the urine proteome, as well as differences based on the major glycan class observed on proteins. Meta-heterogeneity of glycosylation is examined on proteins to determine the variation in glycosylation across multiple sites of a given protein with specific examples of individual sites differing from the glycosylation trends in the overall protein. Taken together, this dataset represents a potentially valuable resource as a baseline characterization of glycoproteins in human urine for future urine glycoproteomics studies.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Humanos , Glicopeptídeos/química , Cromatografia Líquida , Glicoproteínas/metabolismo , Proteoma/química , Polissacarídeos/química
2.
J Fluoresc ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976020

RESUMO

Several fluorescent probes have been designed to detect ClO- in biological systems based on the isomerization mechanism of C = N bonds. Particularly, fluorescein has emerged as an important fluorophore for detecting ClO- because of its unique properties. Previously, we introduced the fluorescein analog F-1 with an active aldehyde group. In this study, two ClO- fluorescent sensors (F-2 and F-3) with imine groups were designed and synthesized using diaminomaleonitrile and 2-hydrazylbenzothiazole as amines. The electron cloud distribution of F-2 and F-3 in ground and excited states was explored via Gaussian calculations, reasonably explaining their photophysical properties. The fluorescence detection of ClO- in solution using the two probes (F-2 and F-3) was realized based on the mechanism of imine deprotection with ClO-. NaClO concentration titration demonstrated that the colorimetric detection of ClO- with the naked eye could be achieved using both F-2 and F-3. However, after adding ClO-, the fluorescence intensity of probe F-2 increased, whereas that of probe F-3 first decreased and then increased. Probes F-2 and F-3 exhibited good selectivity, anti-interference capability, and sensitivity, with the detection limits of 169.95 and 37.30 µM, respectively. Owing to their low cell toxicity, probes F-2 and F-3 can be applied to detect ClO- in vivo. The design approach adopted in this study will further advance the future development of ClO- chemical probes through the removal of C = N bond isomerization.

3.
Exploration (Beijing) ; 3(4): 20220124, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933240

RESUMO

Breast cancer with bone metastasis accounts for serious cancer-associated pain which significantly reduces the quality of life of affected patients and promotes cancer progression. However, effective treatment using nanomedicine remains a formidable challenge owing to poor drug delivery efficiency to multiple cancer lesions and inappropriate management of cancer-associated pain. In this study, using engineered macrophage membrane (EMM) and drugs loaded nanoparticle, we constructed a biomimetic nanoplatform (EMM@DJHAD) for the concurrent therapy of bone metastatic breast cancer and associated pain. Tumor tropism inherited from EMM provided the targeting ability for both primary and metastatic lesions. Subsequently, the synergistic combination of decitabine and JTC801 boosted the lytic and inflammatory responses accompanied by a tumoricidal effect, which transformed the tumor into an ideal decoy for EMM, resulting in prolonged troop migration toward tumors. EMM@DJHAD exerted significant effects on tumor suppression and a pronounced analgesic effect by inhibiting µ-opioid receptors in bone metastasis mouse models. Moreover, the nanoplatform significantly reduced the severe toxicity induced by chemotherapy agents. Overall, this biomimetic nanoplatform with good biocompatibility may be used for the effective treatment of breast cancer with bone metastasis.

4.
Intractable Rare Dis Res ; 12(3): 148-160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37662624

RESUMO

Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.

5.
Acta Pharm Sin B ; 13(9): 3892-3905, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719383

RESUMO

Activating humoral and cellular immunity in lymph nodes (LNs) of nanoparticle-based vaccines is critical to controlling tumors. However, how the physical properties of nanovaccine carriers orchestrate antigen capture, lymphatic delivery, antigen presentation and immune response in LNs is largely unclear. Here, we manufactured gold nanoparticles (AuNPs) with the same size but different shapes (cages, rods, and stars), and loaded tumor antigen as nanovaccines to explore their disparate characters on above four areas. Results revealed that star-shaped AuNPs captured and retained more repetitive antigen epitopes. On lymphatic delivery, both rods and star-shaped nanovaccines mainly drain into the LN follicles region while cage-shaped showed stronger paracortex retention. A surprising finding is that the star-shaped nanovaccines elicited potent humoral immunity, which is mediated by CD4+ T helper cell and follicle B cell cooperation significantly preventing tumor growth in the prophylactic study. Interestingly, cage-shaped nanovaccines preferentially presented peptide-MHC I complexes to evoke robust CD8+ T cell immunity and showed the strongest therapeutic efficacy when combined with the PD-1 checkpoint inhibitor in established tumor study. These results highlight the importance of nanoparticle shape on antigen delivery and presentation for immune response in LNs, and our findings support the notion that different design strategies are required for prophylactic and therapeutic vaccines.

6.
J Nanobiotechnology ; 21(1): 302, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37641137

RESUMO

The biological barriers have seriously restricted the efficacious responses of oral delivery system in diseases treatment. Utilizing a carrier based on the single construction means is hard to overcome these obstacles simultaneously because the complex gastrointestinal tract environment requires carrier to have different or even contradictory properties. Interestingly, spore capsid (SC) integrates many unique biological characteristics, such as high resistance, good stability etc. This fact offers a boundless source of inspiration for the construction of multi-functional oral nanoplatform based on SC without further modification. Herein, we develop a type of biomimetic spore nanoplatform (SC@DS NPs) to successively overcome oral biological barriers. Firstly, doxorubicin (DOX) and sorafenib (SOR) are self-assembled to form carrier-free nanoparticles (DS NPs). Subsequently, SC is effectively separated from probiotic spores and served as a functional vehicle for delivering DS NPs. As expect, SC@DS NPs can efficaciously pass through the rugged stomach environment after oral administration and further be transported to the intestine. Surprisingly, we find that SC@DS NPs exhibit a significant improvement in the aspects of mucus penetration and transepithelial transport, which is related to the protein species of SC. This study demonstrates that SC@DS NPs can efficiently overcome multiple biological barriers and improve the therapeutic effect.


Assuntos
Biomimética , Proteínas do Capsídeo , Esporos , Trato Gastrointestinal , Administração Oral
7.
JCO Precis Oncol ; 7: e2200668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285559

RESUMO

PURPOSE: Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes. MATERIALS AND METHODS: Here, we extended our combined desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC) tissues. RESULTS: From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC), respectively. The majority of the model's selected features show consistent trends across data sets affirming its stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular feature of ccRCC and pRCC. CONCLUSION: Together, these results indicate that signatures derived from DESI-MSI combined with machine learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those reported for IFS.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/cirurgia , Rim/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Espectrometria de Massas , Aprendizado de Máquina
8.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047232

RESUMO

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Estruturas R-Loop , Humanos , Masculino , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica
9.
Metabolites ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422257

RESUMO

Patient-derived xenografts (PDX) are high-fidelity cancer models typically credentialled by genomics, transcriptomics and proteomics. Characterization of metabolic reprogramming, a hallmark of cancer, is less frequent. Dysregulated metabolism is a key feature of clear cell renal cell carcinoma (ccRCC) and authentic preclinical models are needed to evaluate novel imaging and therapeutic approaches targeting metabolism. We characterized 5 PDX from high-grade or metastatic ccRCC by multiparametric magnetic resonance imaging (MRI) and steady state metabolic profiling and flux analysis. Similar to MRI of clinical ccRCC, T2-weighted images of orthotopic tumors of most PDX were homogeneous. The increased hyperintense (cystic) areas observed in one PDX mimicked the cystic phenotype typical of some RCC. The negligible hypointense (necrotic) areas of PDX grown under the highly vascularized renal capsule are beneficial for preclinical studies. Mean apparent diffusion coefficient (ADC) values were equivalent to those of ccRCC in human patients. Hyperpolarized (HP) [1-13C]pyruvate MRI of PDX showed high glycolytic activity typical of high-grade primary and metastatic ccRCC with considerable intra- and inter-tumoral variability, as has been observed in clinical HP MRI of ccRCC. Comparison of steady state metabolite concentrations and metabolic flux in [U-13C]glucose-labeled tumors highlighted the distinctive phenotypes of two PDX with elevated levels of numerous metabolites and increased fractional enrichment of lactate and/or glutamate, capturing the metabolic heterogeneity of glycolysis and the TCA cycle in clinical ccRCC. Culturing PDX cells and reimplanting to generate xenografts (XEN), or passaging PDX in vivo, altered some imaging and metabolic characteristics while transcription remained like that of the original PDX. These findings show that PDX are realistic models of ccRCC for imaging and metabolic studies but that the plasticity of metabolism must be considered when manipulating PDX for preclinical studies.

10.
J Control Release ; 352: 909-919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370878

RESUMO

Constant oxidative stress and lactate accumulation are two main causes of tumor immunosuppression, their concurrent reduction plays a dominant role in effective antitumor immunity, but remains challenging. Herein, reactive oxygen species (ROS) responsive prodrug nanoparticles (designed as DHCRJ) are constructed for metabolic amplified chemo-immunotherapy against triple-negative breast cancer (TNBC) by modulating oxidative state and hyperglycolysis. Specifically, DHCRJ is prepared by the self-assembly of DOX prodrug-tethered ROS consuming bond-bridged copolymers with the loading of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1. Interestingly, the nanoparticle polymer network could reduce ROS to relieve tumor hypoxia and realize the dense-to-loose structure inversion arising from ROS-triggered network collapse, which favors JQ1 release and hyaluronidase (Hyal)-activatable DOX prodrugs generation. More importantly, disruption of oxidative stress decreases glucose uptake and assists JQ1 to down-regulate oncogene c-Myc driven tumor glycolysis for blocking the source of lactate and reshaping immunosuppressive tumor microenvironment (ITME). Meanwhile, benefiting from the synergistic effect of DOX prodrugs and JQ1, DHCRJ is able to facilitate tumor immunogenicity and potentiate systemic immune responses through antigen processing and presentation pathway. In this manner, DHCRJ significantly suppresses tumor growth and metastasis with prolonged survival. Collectively, this study represents a proof of concept antioxidant-enhanced chemo-immunometabolic therapy strategy using ROS-reducing nanoparticles for efficient synergistic therapeutic modality of TNBC.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Nanopartículas/química , Polímeros/química , Estresse Oxidativo , Lactatos , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacologia , Microambiente Tumoral
11.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230850

RESUMO

The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells. MARCKS plays important roles in multiple cellular processes, including cell adhesion and motility, mucin secretion, exocytosis, and inflammatory response. Aberrant MARCKS signaling has been observed in the development and progression of multiple cancer types. In addition, MARCKS facilitates cancer metastasis through modulating cancer cell migration and invasion. Moreover, MARCKS contributes to treatment resistance, likely by promoting cancer stem cell renewal as well as immunosuppression. In this review, we describe MARCKS protein structure, cellular localization, and biological functions. We then discuss the role of MARCKS in cancer metastasis as well as its mechanisms of action in solid tumors. Finally, we review recent advances in targeting MARCKS as a new therapeutic strategy in cancer management.

12.
Front Plant Sci ; 13: 1004904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247541

RESUMO

Quantitative analysis of root development is becoming a preferred option in assessing the function of hidden underground roots, especially in studying resistance to abiotic stresses. It can be enhanced by acquiring non-destructive phenotypic information on roots, such as rhizotrons. However, it is challenging to develop high-throughput phenotyping equipment for acquiring and analyzing in situ root images of root development. In this study, the RhizoPot platform, a high-throughput in situ root phenotyping platform integrating plant culture, automatic in situ root image acquisition, and image segmentation, was proposed for quantitative analysis of root development. Plants (1-5) were grown in each RhizoPot, and the growth time depended on the type of plant and the experimental requirements. For example, the growth time of cotton was about 110 days. The imaging control software (RhizoAuto) could automatically and non-destructively image the roots of RhizoPot-cultured plants based on the set time and resolution (50-4800 dpi) and obtain high-resolution (>1200 dpi) images in batches. The improved DeepLabv3+ tool was used for batch processing of root images. The roots were automatically segmented and extracted from the background for analysis of information on radical features using conventional root software (WinRhizo and RhizoVision Explorer). Root morphology, root growth rate, and lifespan analysis were conducted using in situ root images and segmented images. The platform illustrated the dynamic response characteristics of root phenotypes in cotton. In conclusion, the RhizoPot platform has the characteristics of low cost, high-efficiency, and high-throughput, and thus it can effectively monitor the development of plant roots and realize the quantitative analysis of root phenotypes in situ.

13.
Cancer Metab ; 10(1): 14, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192773

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood. METHODS: We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed. RESULTS: We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC. CONCLUSIONS: ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.

15.
Acta Pharm Sin B ; 12(8): 3398-3409, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967281

RESUMO

The continuing challenges that limit effectiveness of tumor therapeutic vaccines were high heterogeneity of tumor immunogenicity, low bioactivity of antigens, as well as insufficient lymph nodes (LNs) drainage of antigens and adjuvants. Transportation of in situ neoantigens and adjuvants to LNs may be an effective approach to solve the abovementioned problems. Therefore, an FA-TSL/AuNCs/SV nanoplatform was constructed by integrating simvastatin (SV) adjuvant loaded Au nanocages (AuNCs) as cores (AuNCs/SV) and folic acid modified thermal-sensitive liposomes (FA-TSL) as shells to enhance de novo antitumor immunity. After accumulation in tumor guided by FA, AuNCs mediated photothermal therapy (PTT) induced the release of tumor-derived protein antigens (TDPAs) and the shedding of FA-TSL. Exposed AuNCs/SV soon captured TDPAs to form in situ recombinant vaccine (AuNCs/SV/TDPAs). Subsequently, AuNCs/SV/TDPAs could efficiently transport to draining LNs owing to the hyperthermia induced vasodilation effect and small particle size, achieving co-delivery of antigens and adjuvant for initiation of specific T cell response. In melanoma bearing mice, FA-TSL/AuNCs/SV and laser irradiation effectively ablated primary tumor, against metastatic tumors and induced immunological memory. This approach served a hyperthermia enhanced platform drainage to enable robust personalized cancer vaccination.

16.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35881112

RESUMO

Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.


Assuntos
Linfoma Difuso de Grandes Células B , Mieloma Múltiplo , Animais , Fator Ativador de Células B/genética , Antígeno de Maturação de Linfócitos B/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transdução de Sinais , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
17.
Carbohydr Res ; 519: 108598, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35691122

RESUMO

Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.


Assuntos
Glicoproteínas , Ácido N-Acetilneuramínico , Neoplasias da Próstata , Biomarcadores , Glicoproteínas/metabolismo , Humanos , Fatores Imunológicos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos
18.
RSC Adv ; 12(18): 11477-11483, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425056

RESUMO

Fluorescein derivatives with thermally activated delayed fluorescence (TADF) show much stronger competition ability and vaster prospects than traditional fluorescein dyes due to their prominent long lifetime. It will be of great significance to synthesize more fluorescein derivatives with TADF. In this work, compounds DCF-MPYA and FL with TADF properties were obtained by fine tuning the substituents' structure on the basis of fluorescein derivative DCF-MPYM. Their long-lived triplet excited states (21.78 µs, 32.0 µs) were proved by nanosecond time-resolved transient difference absorption spectra. The steady-state and time-resolved fluorescence spectra showed that DCF-MPYA and FL exhibited red fluorescence around 645 nm and 651 nm, respectively. The results of sensitivity to oxygen and heavy atoms further demonstrated that the time-resolved fluorescence spectra originate from the delayed fluorescence. The time correlated single-photon counting (TCSPC) data indicated that DCF-MPYA and FL showed long-lived lifetimes of 13.16 µs and 23.72 µs, respectively. The energy gap (ΔE ST) between the singlet (S1) and triplet (T1) states of DCF-MPYA and FL was calculated to be 3.32 meV and 9.98 meV from the decay rate of DF as a function of temperature. The small energy gap is conducive to the occurrence of efficient TADF at room temperature. Meanwhile, Gaussian calculation was employed to observe the electron density of DCF-MPYA and FL in the ground and excited states. The calculation results indicate that the shapes and energy levels of the highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and LUMOs+1 for the monoanion and dianion forms are similar and thus DCF-MPYA and FL exhibit almost the same luminescence properties. Finally, DCF-MPYA and FL with low toxicity were used in confocal and time-resolved fluorescence imaging. Our construction strategy will be beneficial for developing more fluorescein derivatives with TADF in the future.

19.
Front Pharmacol ; 13: 1015357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601054

RESUMO

Background: During the perioperative period of pediatric surgery, it is extremely stressful for children and parents to enter the operating room and receive the anesthesia induction. This study was designed to evaluate the perioperative outcomes with parental presence at induction of anesthesia (PPIA), intranasal dexmedetomidine, and combined use of PPIA and intranasal dexmedetomidine. Methods: In this prospective study, 124 children were randomly divided into four groups: control (no parental presence or intranasal dexmedetomidine), PPIA (parental presence), DEX (intranasal dexmedetomidine (1.0 µg/kg)), and PPIA + DEX (parental presence and intranasal dexmedetomidine (1.0 µg/kg)). The anxiety of children was mainly evaluated by the modified Yale Preoperative Anxiety Scale-Short Form (mYPAS-SF). Secondary evaluation methods were, for example, the Induction Compliance Checklist (ICC), the Pediatric Anesthesia Emergence Delirium Scale (PAED), the COMFORT Behavior Scale (COMFORT-B Scale), the State-Trait Anxiety Inventory (STAI), and the Visual Analog Scale (VAS). Results: Children in the PPIA + DEX group exhibited significantly lower mYPAS-SF and ICC scores compared with all three other groups (p < 0.001), and children in that group exhibited significantly lower mYPAS-SF and ICC scores compared with the PPIA and DEX groups (p < 0.05). The children's PAED scores in the PPIA, DEX, and PPIA + DEX groups were significantly lower than the control group (p < 0.001).The STAI-S scores of the PPIA, DEX, and PPIA + DEX groups were significantly lower than the score of the control group (p < 0.001). The VAS scores of the PPIA, DEX, and PPIA + DEX groups were significantly higher than that of the control group (p < 0.001), while the score of the PPIA + DEX group was significantly higher than those of the PPIA and DEX groups (p < 0.05). Conclusion: The combined use of PPIA and intranasal dexmedetomidine is more effective than PPIA or intranasal dexmedetomidine for alleviating the preoperative anxiety of children, improving children's induction compliance and parental satisfaction.

20.
Front Neurol ; 13: 1079737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588903

RESUMO

Introduction: Carpal tunnel syndrome (CTS) is a common compression neuropathy of the median nerve in the wrist. Early diagnosis of CTS is essential for selecting treatment options and assessing prognosis. The current diagnosis of CTS is based on the patient's clinical symptoms, signs, and an electromyography (EMG) test. However, they have some limitations. Recently, ultrasound has been adopted as an adjunct diagnostic tool for electromyography (EMG). Ultrasound is a non-invasive and cost-effective technique. It provides a dynamic display of morphological changes in the median nerve and an assessment of CTS etiology such as tenosynovitis, mass compression, and tendon disease. This study aimed to investigate the value of conventional ultrasound and real-time shear wave elastography (SWE) in evaluation of median neuropathy in patients with carpal tunnel syndrome (CTS) before and after surgery. Methods: First, the Boston Carpal Tunnel Questionnaire (BCTQ) was administered to patients with CTS. All subjects were measured at three levels: the distal 1/3 of the forearm, the carpal tunnel inlet, and the distal carpal tunnel using conventional ultrasound and SWE. Median nerve parameters were examined in patients with CTS 1 week after surgery. Results: The cross-sectional area (CSA) and stiffness of the median nerve at the carpal tunnel inlet and distal carpal tunnel were significantly higher in patients with CTS than in healthy controls (p < 0.001). The CSA and stiffness of the median nerve at the carpal tunnel inlet were statistically significantly significantly between pre- and postoperative patients with CTS (p < 0.001). The CSA and stiffness of the nerve in patients with CTS had a positive correlation with electrophysiology severity. Conclusions and discussion: Conventional ultrasound and elastography are valuable in the diagnosis of CTS and are useful in the clinical assessment of patient's nerve recovery after operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...